
A Rational Reconstruction of INTERNIST-I using PROTEGE-TI
Mark A. Musen, John H. Gennari and Wesley W. Wong

Section on Medical Informatics
Stanford University School of Medicine

Stanford, CA 94305-5479, U.S.A
<musen, gennari, wwong@camis.stanford.edu>

PROTEGE-II is a methodology and a suite of tools that
allow developers to build and maintain knowledge-based
systems in a principled manner We used PROTEGE-H to
reconstruct the well-known INTERNIST-I system, demon-
strating the role of a domain ontology (a framework for
specification of a model of an application area), a reusable
problem-solving method, and declarative mapping rela-
tions in creating a new, working program. PROTEGE-lI
generates automatically a domain-specific knowledge-
acquisition tool, which, in the case of the INTERNIST-I
reconstruction, has much of the functionality of the QMR-
KAT knowledge-acquisition tool. This study provides a
means to understand better both the PROTEGE-II method-
ology and the models that underlie INTERNIST-I.

1. INTRODUCTION
Despite substantial progress in the development of princi-
pled methodologies for the construction of knowledge-
based systems, the vast majority of such systems continue
to be built using software-engineering approaches of the
1970s. Most developers equate knowledge engineering
with the elaboration of large, poorly structured rule bases;
the manner in which the rules interact in the course of prob-
lem solving is rarely well defined, and system maintenance
becomes a matter of updating, deleting, or adding new rules
or other data structures to the amorphous knowledge base.
In most situations, systems are built using rapid-prototyp-
ing approaches, and knowledge-base components rarely
can be reused to engineer new systems [1].

For several years, researchers in our laboratory have
been defining a comprehensive methodology and a set of
tools for building knowledge-based systems. Our approach,
known as PROTEGE-IL [2], allows developers to construct
new knowledge-based systems from reusable components,
and makes explicit many of the epistemological assump-
tions that are hidden in the design of traditional knowledge-
based systems. We have used the PROTEGE-II methodology
to build systems in a wide variety of application domains,
including protocol-based medical care, determination of
possible three-dimensional conformations of bimolecular
structures, and configuration of elevators based on architec-
tural and engineering constraints [3]. Although our experi-
ence suggests that significant advantages accrue when

developers build and maintain knowledge-based systems
using PROTEGE-IL, many of the distinctions that we make
about system architecture and about the development life
cycle are not always intuitive to software engineers who
have not thought about these kinds of abstractions previ-
OUSly. PROTEGE-II may thus seem overly complicated and
arcane at first glance.

A particularly helpful way to understand new

approaches is to visualize how they might apply to an
example that already is relatively familiar. INTERNIST-I is
a well-known knowledge-based system that was developed
at the University of Pittsburgh in the 1970s [4, 5]. The pro-
gram was reengineered in the 1980s to become Quick Med-
ical Reference (QMR), which now is widely distributed
commercially for use on personal computers [6]. The struc-
ture of the INTERNIST-I knowledge base, and the strategy
with which INTERNIST-I addresses the task of diagnosing
patient conditions given a set of disease manifestations, are
both well described in the literature [4, 5, 7]. Use of PRO-
TEGE-LI to reconstruct the INTERNIST-I system conse-

quently provides a useful case study by which to
understand the principles of knowledge-base development
supported by the PROTEGE-LI methodology.

2. KNOWLEDGE ENGINEERING WITH PROTEGE-II
PROTEGE-LI comprises both a methodology for engineering
knowledge-based systems and a suite of computer-based
tools that support that methodology [2]. In PROTEGE-LI, the
steps for developing a knowledge-based system include the
following: (1) defining a domain ontology that describes
the classes of concepts in the application area and attributes
of elements of those classes; (2) constructing a problem-
solving method that provides a computational strategy for
solving the task to be automated; (3) modifying the domain
ontology, if necessary, to create an application ontology
that may include additional distinctions about the domain
knowledge required by the problem-solving method; (4)
defining mapping relations that identify how elements of
the application ontology can satisfy the data requirements
of the problem-solving method; (5) generating automati-
cally a knowledge-acquisition tool from the application
ontology, which allows developers to enter the detailed
content knowledge needed to create new knowledge bases.

0195-4210/95/$5.00 © 1995 AMIA. Inc. 289

Our approach supports the use of libraries of reusable
components that facilitate the construction of new knowl-
edge-based systems. In particular, both domain ontologies
and problem-solving methods can be archived and adapted
for use in new applications [1].

Our approach also emphasizes the automatic genera-
tion of a domain-specific knowledge-acquisition tool
directly from the application ontology. The resulting
knowledge-acquisition tool is custom-tailored to the appli-
cation area at hand, and supports the entry and maintenance
of the content knowledge (instances of classes in the appli-
cation ontology) required to fill out a complete knowledge
base. Construction of a domain ontology-and modifying
that ontology, if necessary, to create an application ontol-
ogy-are creative processes that are best performed by
experienced analysts who are proficient at conceptual mod-
eling; the entry and maintenance of content knowledge,
however, is a task that often can be performed indepen-
dently by application specialists who have no knowledge of
programming. PROTEGE_-I thus offers a divide-and-con-
quer approach, in which analysts work with content experts
to construct the appropriate ontologies, and then the content
experts can use the corresponding knowledge-acquisition
tools to create the required knowledge bases.

3. RECONSTRUCTION OF INTERNIST-I

We used PROTEGE-II to develop a knowledge-based system
that reproduces much of the behavior of INTERNIST-I.
Our reconstruction is based on written descriptions of
INTERNIST-I [4, 5, 7] and on a version of the INTER-
NIST-I knowledge base that had been made available to our
research group in 1984. We did not have access to a work-
ing implementation of INTERNIST-I, and thus we had no
way to compare the behavior of our reconstructed system to
that of the original program. Our goal, however, is not to
reproduce precisely all the nuances of INTERNIST-I, but
rather to demonstrate how developers might build a system
like INTERNIST-I using the PROTEGE-II approach.

There are a variety of problem-solving approaches
that can be used to automate the task of medical diagnosis.
Recent work on formal probabilistic inference, for exam-
ple, has led to computationally efficient reasoning strategies
that are quite different from the ad hoc heuristic methods
devised for the original INTERNIST-I system. Some
researchers might argue that, given current advances in
diagnostic reasoning methods, one would not want to
build new knowledge-based systems fashioned in the man-
ner of INTERNIST-I. We believe, however, that apprecia-
tion for modern computational approaches can best be
achieved by means of familiar examples.

3.1 Domain Ontology
The first step in constructing a knowledge-based system
using PROTEGE-Il is to create a domain ontology. The
domain ontology specifies the classes of concepts that are
relevant in the application domain, attributes of instances of

Figure 1. The domain ontology for INTERNIST-I.
Each box refers to a different class in the ontology.
Attributes of classes appear in italic font.

those classes, and data types for all attributes. The domain
ontology thus defines concepts in the application area (e.g.,
the notion of "diseases"), but does not mention any
instances of those concepts (e.g., specific diseases such as
"tuberculosis"). A tool known as MAITRE allows develop-
ers to build and edit these ontologies. Figure 1 shows our
domain ontology for the INTERNIST-I application.

Our INTERNIST-I domain ontology is relatively sim-
ple, with classes that specify the notions of diseases, find-
ings, and so on. Note that one class represents "findings" as
isolated entities, whereas another class ("disease-finding")
represents the relations between instances of findings and
instances of diseases (defining the corresponding frequen-
cies and evoking strengths). The "disease-finding" class
thus provides a specification for the knowledge contained
in INTERNIST-I disease profiles. The domain ontology
does not include any information about individual diseases;
knowledge-base developers enter descriptions of disease
instances using the domain-specific knowledge-acquisition
tool that PROTtGE-II generates programmatically from the
class desciptions in the domain ontology.

Although these were not features of the original
INTERNIST-I knowledge base, our domain ontology
defines the additional concepts of disease-disease links and
of bibliographic citations that justify particular dis-
ease-finding relationships. These concepts have become
important components of the QMR knowledge base [6].

The knowledge base of INTERNIST-I contains a vari-
ety of special properties that define ad hoc relationships
among disease findings [7]. These properties streamline the
manner in which the program asks questions of its users,
and assure that the program's requests for laboratory stud-

290

ies are consistent with a medically appropriate and cost-
effective work-up. These properties are useful only in the
context of the original INTERNIST-I algorithm, however.
Our domain model omits these distinctions because the
properties have not been conceptualized in a manner that
allows them to be reused by alternative problem-solving
approaches. Although we have not done so, it would be
appropriate to create a PROTEGE-HI application ontology
that includes descriptions of these concepts, since applica-
tion ontologies are intended to be mapped to specific prob-
lem-solving methods.

3.2 Problem-Solving Method

PROTEGE-IH supports a library of domain-independent prob-
lem-solving methods. Our goal is to be able to reuse these
methods to build new applications. For example, one of our
methods-a constraint-satisfaction problem solver known
as propose-and-revise-has been used to solve the tasks of
both configuring new elevators and proposing plausible
three-dimensional conformations for ribosome subunits [3].
None of the previously developed problem-solving meth-
ods in the PROTtGt-II library was suitable for the
INTERNIST-I task. We therefore had to program such a
method expressly for this purpose. We constructed a new
method, known as quasi-probabilistic abduction, based on
descriptions of the INTERNIST-I algorithm presented in
the literature [4, 5].

We can view the program code that implements the
quasi-probabilistic-abduction method as a "black box." The
only aspect of the method that system builders must under-
stand is the method ontology, which defines in a declarative
manner all the data on which the problem-solving method
operates (Figure 2). The method ontology for the quasi-
probabilistic-abduction method defines the inputs to the
problem-solving method and the data stores, which are
used internally when the method executes. For example, the
"working-hypothesis" store contains the dynamic list of
hypotheses that the problem-solving method is considering
at any given time. The method ontology-which also is cre-
ated using the MAITRE tool-constitutes a complete data
model for the method.

The quasi-probabilistic abduction method is poten-
tially reusable because, like all problem-solving methods in
the PROTEGE-II library, it is linked to the domain knowl-
edge on which it operates via explicit mapping relations.
These mapping relations are defined by the analyst who
uses PROTEGE-II. In the case of the INTERNIST-I task, one
mapping relation declares that instances of the class "all-
hypotheses" in the method ontology are derived from a
simple transformation of instances of the "disease" class in
the domain ontology; another mapping indicates that
instances of "findings-list" in the method ontology simply
are "findings" in the domain ontology. The PROTEGE_-I user
specifies mappings between the domain ontology and the
method ontology; a mapping interpreter applies these
declarative mappings to the domain knowledge classes and

Figure 2. The method ontology for quasi-probabilis-
tic abduction. The inputs to the method include the
complete set of possible hypotheses and the findings
associated with the current case. The stores are data
elements required internally for problem solving. The
output of the method comprises instances of the
"working-hypothesis" class.

instances so that the problem-solving method accesses the
appropriate data elements defined in the method ontology.

Traditional knowledge-based systems distinguish
between domain knowledge and a reusable inference
engine. This separation, although important, does not allow
reusability of problem-solving methods and of domain
ontologies, as is possible with PROTtGEi-II. Typical expert-
system-building shells require the developer to fashion a
problem-solving method implicitly from the primitives
available in the data elements (e.g., production rules) on
which the inference engine operates. The problem-solving
method thus becomes inextricably bound up with the same
data elements that the developer used to represent domain
knowledge. For example, it is extremely difficult to exam-
ine the production rules in the MYCIN system and to iden-
tify how the rules might relate to the heuristic-classification
problem-solving method-just as it is nearly impossible to
examine the MYCIN knowledge base and to discern the
ontology of infectious diseases. The use of explicit domain
ontologies, method ontologies, and mapping relations in
PROTIGI-II allows developers to regard domain ontologies
and problem-solving methods as well-defined building
blocks for the creation of intelligent systems; the construc-
tion of explicit mapping relations allows developers to
"glue together" reusable domain ontologies and problem-
solving methods when assembling new applications.

291

Figure 3. Knowledge-acquisition tool for the reconstructed version of INTERNIST-I. The DASH system generated
this tool directly from the domain ontology shown in Figure 1. Here, the user enters information concerning the dis-
ease alcoholic hepatitis.

3.3 Knowledge-Acquisition Tool

An ontology describes only the classes of concepts relevant
for a given purpose, but provides no information regarding
specific instances of those classes. In PROTEGE-II, system
builders enter descriptions of instances using a domain-spe-
cific knowledge-acquisition tool that is generated automati-
cally by a subsystem known as DASH. The DASH program
takes as input an application ontology (derived from a
domain ontology; see Figure 1) and generates as output a
corresponding knowledge-acquisition tool (Figure 3). The
knowledge-acquisition tool for the INTERNIST-I domain
allows developers to enter and edit information regarding
individual disease profiles, manifestations of diseases, and
bibliographic citations that support the knowledge-base
entries.

The knowledge-acquisition tool created automati-
cally by PROTEGE-II from the domain ontology has much of
the functionality of QMR-KAT, the knowledge-acquisition
tool that Giuse [8] hand crafted to facilitate maintenance of
the QMR knowledge base. QMR-KAT, however, incorpo-

rates a number of useful, special-purpose features that are
not present in the DASH-generated knowledge-acquisition
tool (e.g., access to the QMR "term completer" to aid dis-
ambiguation of partially entered strings). Whereas the
knowledge-acquistion tool generated by PROTEGE-Il
assures that a user's entries have correct data types and
makes it clear to the user when information is missing, the
tool does not perform other semantic consistency-checking
funtions performed by the original QMR-KAT tool. To
allow such consistency checking in other than an ad hoc
manner would require a means by which developers could
define appropriate constraint axioms within the domain
ontology; a theorem prover within the knowledge-acquisi-
tion tool could then verify that those constraints are not vio-
lated by a user's entries. The current PROTEGE-Il system
does not provide this functionality, however. Despite this
limitation, the knoweledge-acquisition tool generated using
the PROTEGE-Il approach has the significant advantage that,
if the domain ontology for the INTERNIST-I task should
ever change, it is a relatively trivial matter to create a new

292

knowledge-acquisition tool that is consistent with the
altered knowledge-base format.

4. DisCUSSION

We have used the PROTEGE-II knowledge-acquisition meth-
odology to reconstruct a version of the INTERNIST-I sys-
tem. Our approach requires development of a declarative
domain ontology, definition of mappings between the
domain ontology and that of a reusable problem-solving
method (in this case, quasi-probabilistic abduction), and
automated generation of a domain-specific knowledge-
acquisition tool for entry and editing of content knowledge.

Our goal in this work has not been to duplicate the
INTERNIST-I system, but rather to demonstrate how a
principled approach to knowledge acquisition and mainte-
nance can be applied to the reengineering of a well-known
artifact. Although we have not yet tested the behavior of
the resulting system using complete clinical cases, our
reconstructed version of INTERNIST-I does produce out-
put that demonstrates diagnostic reasoning similar to that
shown in published transcripts of INTERNIST-I sessions.

The use of explicit domain and method ontologies
aids system builders in understanding the semantics both of
the INTERNIST-I knowledge base and of the quasi-proba-
bilistic abduction method. The approach makes it straight-
forward for developers to map the INTERNIST-I domain
knowledge onto alternative diagnostic problem-solving
methods that we may program in the future (e.g., a belief-
network algorithm), or to modify the domain ontology in
Figure 1 to generate new knowledge-acquisition tools that
can be used to enter the content knowledge needed to sup-
port other diagnostic tasks. Moreover, the quasi-probabilis-
tic abduction method is itself potentially reusable for a
variety of tasks that involve determination of possible faults
when given a set of abnormal symptoms.

Because the PROTEGE-II architecture allows a prob-
lem-solving method to invoke other problem-solving meth-
ods to solve subtasks posed by the first method [1], it would
be possible to embed our quasi-probabilistic abduction
method within a larger assembly of problem-solving meth-
ods that addressed a more comprehensive application
task-such as protocol-directed treatment planning. An
overarching problem-solving method responsible for deter-
mining the appropriate treatment plan could then invoke the
quasi-probabilistic abduction method to solve subtasks that
require diagnostic reasoning. In this context, the same
method that we used to automate the INTERNIST-I task
might now infer the presence of patient conditions that
could affect the selection and application of appropriate
therapy.

The ability of developers to use PROTEGE-II to select
and assemble reusable components from libraries, and to
modify those components to meet new system require-
ments, offers considerable flexibility-not only as an initial
knowledge-based system evolves, but also as new systems

are conceived and built. Our reconstruction of INTER-
NIST-I using PROTEGE-II provides a domain ontology, a
comprehensive knowledge base, and a new diagnostic prob-
lem-solving method with which we can conduct further
experiments on the development and reuse of knowledge-
base components.

Acknowledgments
This work has been supported by NLM grants LM05157
and LM05304, and by NSF Young Investigator Award IRI-
9257578. John Egar and Thomas Rothenfluh performed the
initial work to reconstruct INTERNIST-I using the PRO-
TEGE-Il architecture, and provided valuable observations
that helped us to refine our knowledge-acquisition system.
Randy Miller provided us with access to a version of the
INTERNIST-I knowledge base.

References
[1] Musen, M.A. Dimensions of knowledge sharing and

reuse. Computers and Biomedical Research 25:
435-467, 1992.

[2] Musen, M.A., Gennari, J.H., Eriksson, H., Tu, S.W., and
Puerta, A.R. PROTEGE-II: Computer support for
development of intelligent systems from libraries of
components. Proceedings of Medinfo'95, pp. 766-770,
Vancouver, BC, 1995.

[3] Gennari, J.H., Altman, R.B., and Musen, M.A. Reuse
with PROTEGE-Il: From elevators to ribosomes. Pro-
ceedings of the ACM-SIGSOFT Symposium on Software
Reusability, pp. 72-80, Seattle, WA, 1995.

[4] Pople, H.E. Heuristic methods for imposing structure on
ill-structured problems: the structuring of medical diag-
nosis. In: Szolovits, P., ed. Artificial Intelligence in
Medicine. pp. 119-185, Boulder, CO:Westview Press,
1982.

[5] Miller, R.A., Pople, H.E., and Myers, J.D. INTER-
NIST-I, an experimental computer-based diagnostic
consultant for general internal medicine. New England
Journal ofMedicine 307:468-476, 1982.

[6] Miller, R.A., McNeil, M.A., Challinor, S.M., Massarie,
FE., and Myers, J.D. The INTERNIST-i/QUICK
MEDICAL REFERENCE project-status report. West-
ern Journal ofMedicine 145:816-822, 1986.

[7] Massarie, F.E., Miller, R.A., and Myers, J.D. INTER-
NIST-I properties: Representing common sense and
good medical practice in a computerized medical
knowledge base. Computers and Biomedical Research
18:458-479, 1985.

[8] Giuse, D.A., Giuse, N.B., and Miller, R.A. Towards
computer-assisted maintenance of medical knowledge
bases. Artificial Intelligence in Medicine 2:21-33, 1990.

293

